Maximizing lifetime in wireless sensor networks with multiple sensor families

Wireless sensor networks are generally composed of a large number of hardware devices of the same type, deployed over a region of interest in order to perform a monitoring activity on a set of target points. Nowadays, several different types of sensor devices exist, which are able to monitor different aspects of the region of interest (including sound, vibrations, proximity, chemical contaminants, among others) and may be deployed together in a heterogeneous network.

Mathematical formulations and metaheuristics comparison for the Push-Tree Problem

The Push-Tree Problem is a recently addressed optimization problem, with the aim to minimize the total amount of traffic generated on information broadcasting networks by a compromise between the use of "push" and "pull" mechanisms. That is, the push-tree problem can be seen as a mixture of building multicast trees with respect to nodes receiving pieces of information while further nodes may obtain information from the closest node within the tree by means of shortest paths. In this sense we are accounting for tradeoffs of push and pull mechanisms in information distribution.

Asymptotic analysis of Poisson shot noise processes, and applications

Poisson shot noise processes are natural generalizations of compound Poisson processes that have been widely applied in insurance, neuroscience, seismology, computer science and epidemiology. In this paper we study sharp deviations, fluctuations and the stable probability approximation of Poisson shot noise processes. Our achievements extend, improve and complement existing results in the literature. We apply the theoretical results to Poisson cluster point processes, including generalized linear Hawkes processes, and risk processes with delayed claims. Many examples are discussed in detail.

Heuristic approaches for the Minimum Labelling Hamiltonian Cycle Problem

Given a graph G with a label (color) assigned to each edge (not necessarily properly) we look for an hamiltonian cycle of G with the minimum number of different colors. The problem has several applications in telecommunication networks, electric networks, multimodal transportation networks, among others, where one aims to ensure connectivity or other properties by means of limited number of different connections. We analyze the complexity of the problem on special graph classes and propose, for the general case, heuristic resolution algorithms.

EULER EQUATIONS AND TRACE PROPERTIES OF MINIMIZERS OF A FUNCTIONAL FOR MOTION COMPENSATED INPAINTING

We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [17] as the relaxation of a modified version of the functional proposed in [16]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets.

Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges

Wireless sensor networks involve many different real-world contexts, such as monitoring and control tasks for traffic, surveillance, military and environmental applications, among others. Usually, these applications consider the use of a large number of low-cost sensing devices to monitor the activities occurring in a certain set of target locations.

Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations

In this work, we face a variant of the capacitated lot sizing problem. This is a classical problem addressing the issue of aggregating lot sizes for a finite number of discrete periodic demands that need to be satisfied, thus setting up production resources and eventually creating inventories, while minimizing the overall cost. In the proposed variant we take into account lifetime constraints, which model products with maximum fixed shelflives due to several possible reasons, including regulations or technical obsolescence.

Towards EXtreme scale technologies and accelerators for euROhpc hw/Sw supercomputing applications for exascale: The TEXTAROSSA approach

In the near future, Exascale systems will need to bridge three technology gaps to achieve high performance while remaining under tight power constraints: energy efficiency and thermal control; extreme computation efficiency via HW acceleration and new arithmetic; methods and tools for seamless integration of reconfigurable accelerators in heterogeneous HPC multi-node platforms. TEXTAROSSA addresses these gaps through a co-design approach to heterogeneous HPC solutions, supported by the integration and extension of HW and SW IPs, programming models, and tools derived from European research.

?-Coverage to extend network lifetime on wireless sensor networks

An important problem in the context of wireless sensor networks is the Maximum Network Lifetime Problem (MLP): find a collection of subset of sensors (cover) each covering the whole set of targets and assign them an activation time so that network lifetime is maximized. In this paper we consider a variant of MLP, where we allow each cover to neglect a certain fraction (1 - ?) of the targets. We analyze the problem and show that the total network lifetime can be hugely improved by neglecting a very small portion of the targets.