A Simulation Based Approach for Evaluating the Impact of Maritime Transport on the Inventory Levels of an Oil Supply Chain

One of the most important objectives of a manufacturing company is the optimization of the distribution of the produced goods considering the whole value chain. Unfortunately, in many companies the performance of the supply chain depends on many uncertain factors that are difficult to predict. The only way to face them is to adopt innovative solutions and tools that allow a swift response to the market changes.

Characterization of model errors in the calculation of tangent heights for atmospheric infrared limb measurements

We review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray tracing and refraction models are very accurate, at least in the mid-infrared. The factor with largest effect in the tangent height calculation is the assumed atmosphere. Using a climatological model in place of the real atmosphere may cause tangent height errors up to ± 200 m.

Wind-induced salt-wedge intrusion in the Tiber river mouth (Rome-Central Italy)

The wind effect on river water quality was illustrated by means of thermohaline measurements carried out in the Tiber River in May 2012. The survey was carried out using a boat, in stations located in the two Tiber branches: Fiumara Grande and Traiano Canal. Thermohaline variables (salinity and temperature) were used to describe the water-type patterns and to define the salt-wedge position. Although the river flow rate was rather high, saltwater intrusion happened. Wind data suggested that the more probable cause of salt-wedge intrusion was the wind action.

Pattern formation in liquid-vapor systems under periodic potential and shear

In this paper the phase behavior and pattern formation in a sheared nonideal fluid under a periodic potential is studied. An isothermal two-dimensional formulation of a lattice Boltzmann scheme for a liquid-vapor system with the van der Waals equation of state is presented and validated. Shear is applied by moving walls and the periodic potential varies along the flow direction. A region of the parameter space, where in the absence of flow a striped phase with oscillating density is stable, will be considered.