On the genome base composition of teleosts: the effect of environment and lifestyle

Background: The DNA base composition is well known to be highly variable among organisms. Bio-physic studies on the effect of the GC increments on the DNA structure have shown that GC-richer DNA sequences are more bendable. The result was the keystone of the hypothesis proposing the metabolic rate as the major force driving the GC content variability, since an increased resistance to the torsion stress is mainly required during the transcription process to avoid DNA breakage.

Cancer Markers Selection Using Network-Based Cox Regression: A Methodological and Computational Practice

International initiatives such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multiple datasets at different genome-scales with the aim of identifying novel cancer biomarkers and predicting survival of patients. To analyze such data, several statistical methods have been applied, among them Cox regression models. Although these models provide a good statistical framework to analyze omic data, there is still a lack of studies that illustrate advantages and drawbacks in integrating biological information and selecting groups of biomarkers.

Assessment of MIPAS ESA V7 products and first verification of MIPAS ESA V8 products

MIPAS on ENVISAT performed almost continuous measurements of atmospheric composition for approximately 10 years, from June 2002 to April 2012. ESA processor, based on the algorithm ORM (Optimized Retrieval Model), originally designed for the Near Real Time analysis and developed by an European Consortium led by IFAC, is currently used for the reanalysis of the full MIPAS mission. The maintenance and the upgrade of the ESA processor are made in the frame of the Quality Working Group, where a fruitful collaboration among Level 1, Level 2 and validation teams can be exploited.

An atlas of gene expression and gene co-regulation in the human retina

The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome).

Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids.

Free-living bacteria grown under aerobic conditions were used to investigate, by next-generation RNA sequencing analysis, the transcriptional profiles of Sinorhizobium meliloti wild-type 1021 and its derivative, RD64, overproducing the main auxin indole-3-acetic acid (IAA). Among the upregulated genes in RD64 cells, we detected the main nitrogen-fixation regulator fixJ, the two intermediate regulators fixK and nifA, and several other genes known to be FixJ targets.

A macroscopic mathematical model for cell migration assays using a real-time cell analysis

Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number.

Coupling weakly-compressible SPH with Finite Volume Method: an algorithm for simulating free-surface flows

An algorithm for coupling a classical Finite Volume (FV) approach, that discretize the Navier-Stokes equations on a block structured Eulerian grid, with the weakly-compressible SPH is presented. The coupling procedure aims at applying each solver in the region where its intrinsic characteristics can be exploited in the most efficient and accurate way: the FV solver is used to resolve the bulk flow and the wall regions, whereas the SPH solver is implemented in the free surface region to capture details of the front evolution.

Tailored multivariate analysis for modulated enhanced

Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited for in situ and operando structural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed.

FLOW LAMINARIZATION AND ACCELERATION BY SUSPENDED PARTICLES

In [Comm. Appl. Math. Comput. Sci., 4 (2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present paper we revisit the model. In particular we allow for a continuum of particle sizes, rewrite the velocity equation in a form which involves the Laplace transform of a given function or measure, and provide several rigorous asymptotic expansions for the velocity.