Multitemporal Backscattering Logistic Analysis for Intertidal Bathymetry

A new methodology for the mapping of intertidal terrain morphology is presented. It is based on the use of synthetic aperture radar (SAR) images and the temporal correlation between the SAR backscatter intensity and the water level on the intertidal zone. The proposed methodology does not require manual editing, providing a set of geolocated pixels that can be used to generate a digital elevation model of the intertidal zone. The methodology is validated using TerraSAR-X SAR images acquired over Tagus estuary.

Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model

This paper studies the problem of the assimilation of precipitable water vapor (PWV), estimated by synthetic aperture radar interferometry, using the Weather Research and Forecast Data Assimilation model 3-D variational data assimilation system. The experiment is designed to assess the impact of the PWV assimilation on the hydrometers and the rainfall predictions during 12 h after the assimilation time. A methodology to obtain calibrated maps of PWV and estimated their precision is also presented.

Late-time evolution of cosmological models with fluids obeying a Shan-Chen-like equation of state

Classical as well as quantum features of the late-time evolution of cosmological models with fluids obeying a Shan-Chen-like equation of state are studied. The latter is of the type p=weff(?)? and has been used in previous works to describe, e.g., a possible scenario for the growth of the dark-energy content of the present Universe. At the classical level, the fluid dynamics in a spatially flat Friedmann-Robertson-Walker background implies the existence of two possible equilibrium solutions depending on the model parameters associated with (asymptotic) finite pressure and energy density.

Analysis of Galileo and GPS integration for GNSS Tomography

Global Navigation Satellite System (GNSS) tomography provides 3-D reconstructions of atmosphere wet refractivity, related to water vapor. A simulated analysis of the integration of Global Positioning System and future Galileo data is presented. Atmospheric refractivity is derived from radiosonde data acquired over the Lisbon area. The impact of Galileo data on the tomographic reconstruction is assessed.

Generalized de la Vallée Poussin approximations on [-1, 1]

In this paper, a general approach to de la Vallée Poussin means is given and the resulting near best polynomial approximation is stated by developing simple sufficient conditions to guarantee that the Lebesgue constants are uniformly bounded. Not only the continuous case but also the discrete approximation is investigated and a pointwise estimate of the generalized de Vallée Poussin kernel has been stated to this purpose. The theory is illustrated by several numerical experiments.

Hierarchical non-negative matrix factorization applied to three-dimensional 3T MRSI data for automatic tissue characterization of the prostate

In this study non-negative matrix factorization (NMF) was hierarchically applied to simulated and in vivo three-dimensional 3 T MRSI data of the prostate to extract patterns for tumour and benign tissue and to visualize their spatial distribution. Our studies show that the hierarchical scheme provides more reliable tissue patterns than those obtained by performing only one NMF level. We compared the performance of three different NMF implementations in terms of pattern detection accuracy and efficiency when embedded into the same kind of hierarchical scheme.

Dynamics and rheology of cells and vesicles in shear flow

A deep understanding of the dynamics and rheology of suspensions of vesicles, cells, and capsules is relevant for different applications, ranging from soft glasses to blood flow [1]. I will present the study of suspensions of fluid vesicles by a combination of molecular dynamics and mesoscale hydrodynamics simulations (multi-particle collision dynamics) in two dimensions [2], pointing out the big potential of the numerical method to address problems in soft matter.

A critical assessment of methods to recover information from averaged data

Conformational heterogeneity is key to the function of many biomacromolecules, but only a few groups have tried to characterize it until recently. Now, thanks to the increased throughput of experimental data and the increased computational power, the problem of the characterization of protein structural variability has become more and more popular. Several groups have devoted their efforts in trying to create quantitative, reliable and accurate protocols for extracting such information from averaged data. We analyze here different approaches, discussing strengths and weaknesses of each.