An Integration by Parts Formula for Functionals of the Dirichlet-Ferguson Measure, and Applications

The Dirichlet-Ferguson measure is a random probability measure that has seen widespread use in Bayesian nonparametrics. Our main results can be seen as a first step towards the development of a stochastic analysis of the Dirichlet-Ferguson measure. We define a gradient that acts on functionals of the measure and derive its adjoint. The corresponding integration by parts formula is used to prove a covariance representation formula for square integrable functionals of the Dirichlet-Ferguson measure and to provide a quantitative central limit theorem for the first chaos.

Model selection for inferring Gaussian graphical models

In this article, we deal with the model selection problem for estimating a Gaussian Graphical Model (GGM) by regression based techniques. In fact, although regression based techniques are well understood and have good theoretical properties, it is still not clear which criterion is more appropriate for model selection. In this work we do a comparative study between CV and BIC, obtaining important conclusions that can be of practical interest in different contexts of data analysis.

An inversion method based on random sampling for real-time MEG neuroimaging

The MagnetoEncephaloGraphy (MEG) has gained great interest in neurorehabilitation training due to its high temporal resolution. The challenge is to localize the active regions of the brain in a fast and accurate way. In this paper we use an inversion method based on random spatial sampling to solve the real-time MEG inverse problem. Several numerical tests on synthetic but realistic data show that the method takes just a few hundredths of a second on a laptop to produce an accurate map of the electric activity inside the brain. Moreover, it requires very little memory storage.

H2020 Project ECOPOTENTIAL: making best use of remote sensing and in-situ observations to improve future ecosystem benefits

This poster has been presented at the first ILTER Open Science Meeting in Skukuza, Kruger National Park, South Africa, 9-13 October 2016 (https://na.eventscloud.com/ehome/156435), and describes the general purposes and organization of the H2020 project ECOPOTENTIAL (http://www.ecopotential-project.eu/)

High performance implementations of the 2D Ising model on GPUs

We present and make available novel implementations of the two-dimensional Ising model that is used as a benchmark to show the computational capabilities of modern Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach.

Task-oriented attributed network embedding by multi-view features

Network embedding, also known as network representation learning, aims at defining low-dimensional, continuous vector representation of nodes to maximally preserve the network structure. Recent efforts attempt to extend network embedding to attributed networks where nodes are enriched with descriptors, to enhance interpretability. However, most of these efforts seldom consider the additional knowledge relevant to the aim of the downstream network analysis, i.e. task-related information. When they do, they are analysis-specific and thus lack adaptability to alternative tasks.

Easyreporting simplifies the implementation of Reproducible Research layers in R software

During last years "irreproducibility" became a general problem in omics data analysis due to the use of sophisticated and poorly described computational procedures. For avoiding misleading results, it is necessary to inspect and reproduce the entire data analysis as a unified product. Reproducible Research (RR) provides general guidelines for public access to the analytic data and related analysis code combined with natural language documentation, allowing third-parties to reproduce the findings.

Data-driven simulation of contagions in public venues

The COVID-19 pandemic triggered a global research effort to define and assess timely and effective containment policies. Understanding the role that specific venues play in the dynamics of epidemic spread is critical to guide the implementation of fine-grained non-pharmaceutical interventions (NPIs). In this paper, we present a new model of context-dependent interactions that integrates information about the surrounding territory and the social fabric.

From Infection to Immunity: Understanding the Response to SARS-CoV2 Through In-Silico Modeling

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: Studies of the insurgence of immunity is at the core of both SARS-CoV-2 vaccine development and therapies. This paper attempts to describe the insurgence (and the span) of immunity in COVID-19 at the population level by developing an in-silico model.

NUMERICAL ANALYSIS OF ASYMPTOTICALLY CONVOLUTION EVOLUTIONARY INTEGRAL EQUATIONS

Asymptotically convolution Volterra equations are characterized by kernel functions which exponentially decay to convolution ones. Their importance in the applications motivates a numerical analysis of the asymptotic behavior of the solution. Here the quasi-convolution nature of the kernel is exploited in order to investigate the stability of .; / methods for general systems and in some particular cases.