Specifying and Analysing Reputation Systems with a Coordination Language

Reputation systems are nowadays widely used to support decision making in networked systems. Parties in such systems rate each other and use shared ratings to compute reputation scores that drive their interactions. The existence of reputation systems with remarkable differences calls for formal approaches to their analysis. We present a verification methodology for reputation systems that is based on the use of the coordination language Klaim and related analysis tools.

Mesoscale modelling of near-contact interactions for complex flowing interfaces

We present a mesoscale kinetic model for multicomponent flows, augmented with a short range forcing term, aimed at describing the combined effect of surface tension and near-contact interactions operating at the fluid interface level. Such a mesoscale approach is shown to (i) accurately capture the complex dynamics of bouncing colliding droplets for different values of the main governing parameters, (ii) predict quantitatively the effective viscosity of dense emulsions in micro-channels and (iii) simulate the formation of the so-called soft flowing crystals in microfluidic focusers.

Numerical analysis of the dynamics of rigid blocks subjected to support excitation

The dynamic behaviour of rigid blocks subjected to support excitation is represented by discontinuous differential equations with state jumps. In the numerical simulation of these systems, the jump times corresponding to the numerical trajectory do not coincide with the ones of the given problem. When multiple state jumps occur, this approximation may affect the accuracy of the solution and even cause an order reduction in the method. Focus here is on the error behaviour in the numerical dynamic.

Reputation-Based Cooperation in the Clouds

The popularity of the cloud computing paradigm is opening new opportunities for collaborative computing. In this paper we tackle a fundamental problem in open-ended cloud-based distributed computing platforms, i.e., the quest for potential collaborators. We assume that cloud participants are willing to share their computational resources for shared distributed computing problems, but they are not willing to disclose the details of their resources. Lacking such information, we advocate to rely on reputation scores obtained by evaluating the interactions among participants.

Acoustic-propagation properties of methane clathrate hydrates from non-equilibrium molecular dynamics

Given methane hydrates' importance in marine sediments, as well as the widespread use of seabed acoustic-signaling methods in oil and gas exploration, the elastic characterization of these materials is particularly relevant. A greater understanding of the properties governing phonon, sound, and acoustic propagation would help to better classify methane-hydrate deposits, aiding in their discovery.

Long-time behaviour of the approximate solution to quasi-convolution Volterra equations

The integral representation of some biological phenomena consists in Volterra equations whose kernels involve a convolution term plus a non convolution one. Some significative applications arise in linearised models of cell migration and collective motion, as described in Di Costanzo et al. (Discrete Contin. Dyn. Syst. Ser. B 25 (2020) 443-472), Etchegaray et al. (Integral Methods in Science and Engineering (2015)), Grec et al. (J. Theor. Biol. 452 (2018) 35-46) where the asymptotic behaviour of the analytical solution has been extensively investigated.

Reputation-Based Composition of Social Web Services

Social Web Services (SWSs) constitute a novel paradigm of service-oriented computing, where Web services, just like humans, sign up in social networks that guarantee, e.g., better service discovery for users and faster replacement in case of service failures. In past work, composition of SWSs was mainly supported by specialised social networks of competitor services and cooperating ones. In this work, we continue this line of research, by proposing a novel SWSs composition procedure driven by the SWSs reputation.

Trust-Based Enforcement of Security Policies

Two conflicting high-level goals govern the enforcement of security policies, abridged in the phrase ``high security at a low cost''. While these drivers seem irreconcilable, formal modelling languages and automated verification techniques can facilitate the task of finding the right balance. We propose a modelling language and a framework in which security checks can be relaxed or strengthened to save resources or increase protection, on the basis of trust relationships among communicating parties.