Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions

The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug delivery, and semiconductor manufacturing. By means of numerical simulations based on the direct-simulation Monte Carlo (DSMC) method, we investigate the influence of the orientation of the particle and rarefaction on the drag and lift coefficients, in the case of prolate and oblate ellipsoidal particles immersed in a uniform ambient flow.

The dynamics of colloidal intrusions in liquid crystals: A simulation perspective

Dispersing colloidal particles into liquid crystals provides a promising avenue to build a novel class of materials, with potential applications, among others, as photonic crystals, biosensors, metamaterials and new generation liquid crystal devices. Understanding the physics and dynamical properties of such composite materials is then of high-technological relevance; it also provides a remarkable challenge from a fundamental science point of view due to the intricacies of the hydrodynamic equations governing their dynamical evolution.

Modeling dual drug delivery from eluting stents: the influence of non-linear binding competition and non-uniform drug loading

Objective There is increasing interest in simultaneous endovascular delivery of more than one drug from a drug-loaded stent into a diseased artery. There may be an opportunity to obtain a therapeutically desirable uptake profile of the two drugs over time by appropriate design of the initial drug distribution in the stent.

Image Scaling by de la Vallée-Poussin Filtered Interpolation

We present a new image scaling method both for downscaling and upscaling, running with any scale factor or desired size. The resized image is achieved by sampling a bivariate polynomial which globally interpolates the data at the new scale. The method's particularities lay in both the sampling model and the interpolation polynomial we use. Rather than classical uniform grids, we consider an unusual sampling system based on Chebyshev zeros of the first kind.

Spatial population genetics with fluid flow

The growth and evolution of microbial populations is often subjected to advection by fluid flows in spatially extended environments, with immediate consequences for questions of spatial population genetics in marine ecology, planktonic diversity and origin of life scenarios. Here, we review recent progress made in understanding this rich problem in the simplified setting of two competing genetic microbial strains subjected to fluid flows.

Switching hydrodynamics in liquid crystal devices: A simulation perspective

In liquid crystal devices it is important to understand the physics underlying their switching between different states, which is usually achieved by applying or removing an electric field. Flow is known to be a key determinant of the timescales and pathways of the switching kinetics. Incorporating hydrodynamic effects into theories for liquid crystal devices is therefore important; however this is also highly non-trivial, and typically requires the use of accurate numerical methods.

Active semiflexible polymer under shear flow

The dynamic behavior of a self-propelled semiflexible filament of length L is con- sidered under the action of a linear shear flow. The system is studied by using Brownian multi-particle collision dynamics. The system can be characterized in terms of the persistence length Lp of the chain, of the Peclet number, and of the Weissenberg number. The quantity Lp/L measures the bending rigidity of the polymer, the Peclet number Pe is the ratio of active force times L to thermal energy, and the Weissenberg number Wi characterizes the flow strength over thermal effects.

Final MIPAS L1 and L2 V8 full mission reprocessing, lessons learnt and possible further improvements

MIPAS is a Fourier Transform spectrometer that measured the atmospheric limb emission spectra in the middle infrared on board the ENVISAT satellite. These measurements allowed the global monitoring of the three-dimensional (latitude, longitude and altitude) distribution of temperature and of the concentrations of many species, during both day and night, for 10 years, from July 2002 to April 2012. MIPAS measurements allowed to study the atmosphere from the upper troposphere to the stratosphere and above, up to the thermosphere.

Le diverse declinazioni della matematica per lo sviluppo dell'intelligenza artificiale nei seminari "AIM - Fundamentals and beyond".

Tra novembre 2020 e giugno 2021, l'Istituto per le Applicazioni del Calcolo "Mauro Picone" (IAC) ha realizzato un ciclo di seminari dedicati al rapporto tra Intelligenza Artificiale e Matematica, denominato AIM - Artificial Intelligence and Mathematics - Fundamentlas and beyond.