Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. Experimental data, at Reynolds number ranging from R? = 350 to R? = 815, are obtained in a swirling water flow between counter-rotating baffled disks. Direct numerical simulations (DNS) data, up to R? = 284, are obtained from a statistically homogeneous and isotropic turbulent flow.
Lagrange Interpolation with Constraints on the Real Line
We investigate the uniform convergence of Lagrange interpolation at the
zeros of the orthogonal polynomials with respect to a Freud-type weight
in the presence of constraints. We show that by a simple procedure it
is always possible to transform the matrices of these zeros into matrices
such that the corresponding Lagrange interpolating polynomial with re-
spect to the given constraints well approximates a given function. This
procedure was, at ¯rst, successfully introduced for the polynomial inter-
polation with constraints on bounded intervals [1].