Formal Analogy between the Dirac Equation in Its Majorana Form and the Discrete-Velocity Version of the Boltzmann Kinetic Equation

We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics.

Fixed point iterations for a class of nonstandard Sturm -Liouville boundary value problems

The paper examines a particular class of nonlinear integro-differential equations consisting of a Sturm-Liouville boundary value problem on the half-line, where the coefficient of the differential term depends on the unknown function by means of a scalar integral operator. In order to handle the nonlinearity of the problem, we consider a fixed point iteration procedure, which is based on considering a sequence of classical Sturm-Liouville boundary value problems in the weak solution sense.