Smoothed particle hydrodynamics method from a large eddy simulation perspective

The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier- Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity.

Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method

We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers.

On the role of specific drug binding in modelling arterial eluting stents

In this paper we consider drug binding in the arterialwall following delivery by a drug-eluting stent. Whilst it is now generally accepted that a non-linear saturable reversible binding model is required to properly describe the binding process, the precise form of the binding model varies between authors. Our particular interest in this manuscript is in assessing to what extent modelling specific and non-specific binding in the arterial wall as separate phases is important.

Hydrodynamic singular regimes in 1+1 kinetic models and spectral numerical methods

Classical results from spectral theory of stationary linear kinetic equations are applied to efficiently approximate two physically relevant weakly nonlinear kinetic models: a model of chemotaxis involving a biased velocity-redistribution integral term, and a Vlasov-Fokker-Planck (VFP) system. Both are coupled to an attractive elliptic equation producing corresponding mean-field potentials.

Distinct Antigen Delivery Systems Induce Dendritic Cells' Divergent Transcriptional Response: New Insights from a Comparative and Reproducible Computational Analysis.

Vaccination is the most successful and cost-effective method to prevent infectious diseases. However, many vaccine antigens have poor in vivo immunogenic potential and need adjuvants to enhance immune response. The application of systems biology to immunity and vaccinology has yielded crucial insights about how vaccines and adjuvants work. We have previously characterized two safe and powerful delivery systems derived from non-pathogenic prokaryotic organisms: E2 and fd filamentous bacteriophage systems.