Epidemic reaction-diffusion system with cross-diffusion: modeling and numerical solution

Reaction-diffusion systems with cross-diffusion are analyzed here for modeling the population dynamics of epidemic systems. In this paper specific attention is devoted to the numerical analysis and simulation of such systems to show that, far from possible pathologies, the qualitative behaviour of the systems may well interpret the dynamics of real systems.

On the benefits of Laplace samples in solving a rare event problem using cross-entropy method

The convergence quality of the cross-entropy (CE) optimizer relies critically on the mechanism meant for randomly generating data samples, in agreement with the inference drawn in the earlier works--the fast simulated annealing (FSA) and fast evolutionary programming (FEP). Since tracing a near-global-optimum embedded on a nonconvex search space can be viewed as a rare event problem, a CE algorithm constructed using a longtailed distribution is intuitively attractive for effectively exploring the optimization landscape.

Convergence of a numerical method for the solution of non-standard integro-differential boundary value problems

In a recent paper we proposed a numerical method to solve a non-standard non-linear second order integro-differential boundary value problem. Here, we answer two questions remained open: we state the order of convergence of this method and provide some sufficient conditions for the uniqueness of the solution both of the discrete and the continuous problem. Finally, we compare the performances of the method for different choices of the iteration procedure to solve the non-standard nonlinearity.