Lattice Boltzmann simulations of vortex entrapment of particles in a microchannel with curved or flat edges
Numerical simulations were conducted to determine the effects of flat-edge and curved-edge channel wall obstacles on the vortex entrapment of uniform-size particles in a microchannel with a T-shape divergent flow zone at different flow Reynolds numbers (Re). Two-particle simulations with a non-pulsating flow indicated that although particles were consistently entrapped in a vortex zone in a microchannel with flat-edge wall obstacles at all Re studied, vortex zone entrapment of particles occurred only at the lowest Re in a microchannel with curved-edge wall obstacles.