Nonlinear Langevin model for the early-stage dynamics of electrospinning jets

We present a nonlinear Langevin model to investigate the early-stage dynamics of electrified polymer jets in electrospinning experiments. In particular, we study the effects of air drag force on the uniaxial elongation of the charged jet, right after ejection from the nozzle. Numerical simulations show that the elongation of the jet filament close to the injection point is significantly affected by the nonlinear drag exerted by the surrounding air. These results provide useful insights for the optimal design of current and future electrospinning experiments.

JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning

We present the open-source computer program JETSPIN, specifically designed to simulate the electro-spinning process of nanofibers. Its capabilities are shown with proper reference to the underlying model, as well as a description of the relevant input variables and associated test-case simulations. The various interactions included in the electrospinning model implemented in JETSPIN are discussed in detail. The code is designed to exploit different computational architectures, from single to parallel processor workstations.

A Bioventing Mathematical Model Based on Pure Oxygen Injection

A mathematical model and the simulation of subsoil decontamination by bioventing will be presented. The bases for the model construction are the following: (1) the pollutant is considered as immobile and confined in the unsaturated zone; (2) only oxygen is injected in the subsoil by wells; (3) the bacteria acting the pollutant removal are immobile and their growth depends on oxygen and pollutant concentration.

On the influence of solid-liquid mass transfer in the modelling of drug release from stents

In this paper we present a model of drug release from a drug eluting-stent and the subsequent drug transport in the arterial wall. In order to study the complete process, a two-phase mathematical model describing the transport of a drug between two coupled media of different properties and dimensions is presented. A system of partial differential equations describes both the solid-liquid transfer (dissolution) and diffusion processes in the polymeric substrate as well as diffusion, convection and reaction in the tissue layer.

Velocity Vector Field Optimization in Bioventing

Bioventing is a technology used to remove some kinds of pollutants from the subsoil and it is based on the capability of some bacteria species to biodegrade contaminants. The biochemical reaction requires, among other things, oxygen and, therefore, oxygen is inflated into the subsoil by wells. The mathematical model describes the movement of the different fluids which are present in the subsoil - air, water, pollutants, oxygen and so on - and the bacteria population dynamics.