A Numerical Comparison Between Degenerate Parabolic and Quasilinear Hyperbolic Models of Cell Movements Under Chemotaxis

We consider two models which were both designed to describe the movement of eukaryotic cells responding to chemical signals. Besides a common standard parabolic equation for the diffusion of a chemoattractant, like chemokines or growth factors, the two models differ for the equations describing the movement of cells. The first model is based on a quasilinear hyperbolic system with damping, the other one on a degenerate parabolic equation. The two models have the same stationary solutions, which may contain some regions with vacuum.

Acceleration statistics of inertial particles from high resolution DNS turbulence

We present results from recent direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, with grid resolution up to 5123 and R? ? 185. By following the trajectories of millions of particles with different Stokes numbers, St ? [0.16 : 3.5], we are able to characterize in full detail the statistics of particle acceleration. We focus on the probability density function of the normalised acceleration a/arms and on the behaviour of their rootmean-squared acceleration arms as a function of both St and R?.

Rheological properties of sheared vesicle and cell suspensions

Numerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid.

MULTIDISCIPLINARY DESIGN OPTIMIZATION OF A SAILPLAN

In this paper, multi-disciplinary optimization techniques are applied to sail design. Two different mathematical models, providing the solution of the fluid-dynamic and the structural problems governing the behaviour of a complete sailplan, are coupled in a fluid-structure interaction (FSI) scheme, in order to determine the real flying shape of the sails and the forces acting on them. A numerical optimization algorithm is then applied, optimizing the structural pattern of the sailplan in order to maximize the driving force or other significant quantities.

Rheologic and dynamic behavior of sheared vesicle suspensions

The rheology and dynamics of suspensions of fluid vesicles is investigated by a combination of molecular dynamics and mesoscale hydrodynamics simulations in two dimensions. The vesicle suspension is confined between two no-slip shearing walls. The flow behavior is studied as a function of the shear rate, the volume fraction of vesicles, and the viscosity ratio between inside and outside fluids. Results are obtained for the interactions of two vesicles, the intrinsic viscosity of the suspension, and the cell-free layer near the walls.

The rate of collision small cloud droplets in turbulent flows

Coalescence growth of droplets is a fundamental process for liquid cloud evolution. The initiation of collisions and coalescence occurs when a few droplets become large enough to fall. Gravitational collisions represent the most efficient mechanism for multi-disperse solutions, when droplets span a large variety of sizes. However, turbulence provides another mechanism for droplets coalescence, taking place also in the case of uniform condensational growth leading to narrow droplet-size spectra.