Lattice Boltzmann Modeling of Cholesteric Liquid Crystal Droplets Under an Oscillatory Electric Field

We numerically study the dynamics of quasi-two dimensional cholesteric liquid crystal droplets in the presence of a time-dependent electric field, rotating at constant angular velocity. A surfactant sitting at the droplet interface is also introduced to prevent droplet coalescence. The dynamics is modeled following a hybrid numerical approach, where a standard lattice Boltzmann technique solves the Navier-Stokes equation and a finite difference scheme integrates the evolution equations of liquid crystal and surfactant.

On the probability of (falsely) connecting two distinct components when learning a GGM

In this paper, we extend the result on the probability of (falsely) connecting two distinct components when learning a GGM (Gaussian Graphical Model) by the joint regression based technique. While the classical method of regression based technique learns the neighbours of each node one at a time through a Lasso penalized regression, its joint modification, considered here, learns the neighbours of each node simultaneously through a group Lasso penalized regression.

Seeking critical nodes in digraphs

The Critical Node Detection Problem (CNDP) consists in finding the set of nodes, defined critical, whose removal maximally degrades the graph. In this work we focus on finding the set of critical nodes whose removal minimizes the pairwise connectivity of a direct graph (digraph). Such problem has been proved to be NP-hard, thus we need efficient heuristics to detect critical nodes in real-world applications. We aim at understanding which is the best heuristic we can apply to identify critical nodes in practice, i.e., taking into account time constrains and real-world networks.

A Preliminary Investigation of a Single Shock Impact on Italian Mortality Rates Using STMF Data: A Case Study of COVID-19

Mortality shocks, such as pandemics, threaten the consolidated longevity improvements, confirmed in the last decades for the majority of western countries. Indeed, just before the COVID-19 pandemic, mortality was falling for all ages, with a different behavior according to different ages and countries. It is indubitable that the changes in the population longevity induced by shock events, even transitory ones, affecting demographic projections, have financial implications in public spending as well as in pension plans and life insurance.

Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy

We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities.

A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing

In this manuscript we propose a numerical method for non-linear integro-differential systems arising in age-of-infection models in a heterogeneously mixed population. The discrete scheme is based on direct quadrature methods and provides an unconditionally positive and bounded solution. Furthermore, we prove the existence of the numerical final size of the epidemic and show that it tends to its continuous equivalent as the discretization steplength vanishes.

The variational approach to s-fractional heat flows and the limit cases s-+0+and s-+1-

This paper deals with the limit cases for s-fractional heat flows in a cylindrical domain, with homogeneous Dirichlet boundary conditions, as s-+ 0+ and s-+ 1-. We describe the fractional heat flows as minimizing move-ments of the corresponding Gagliardo seminorms, with re-spect to the L2 metric. To this end, we first provide a Gamma-convergence analysis for the s-Gagliardo seminorms as s-+ 0+ and s-+ 1-; then, we exploit an abstract stability result for minimizing movements in Hilbert spaces, with respect to a sequence of Gamma-converging uniformly lambda-convex energy function-als.

Computing integrals with an exponential weight on the real axis in floating point arithmetic

The aim of this work is to propose a fast and reliable algorithm for computing integrals of the type $$\int_{-\infty}^{\infty} f(x) e^{\scriptstyle -x^2 -\frac{\scriptstyle 1}{\scriptstyle x^2}} dx,$$ where $f(x)$ is a sufficiently smooth function, in floating point arithmetic. The algorithm is based on a product integration rule, whose rate of convergence depends only on the regularity of $f$, since the coefficients of the rule are ``exactly'' computed by means of suitable recurrence relations here derived. We prove stability and convergence in the space of locally continuous functions

Nonlocal finite dffierence discretization of a class of renewal equation models for epidemics

In this paper we consider a non-standard discretization to a Volterra integro-dierential system which includes a number of age-of-infection models in the literature. The aim is to provide a general framework to analyze the proposed scheme for the numerical solution of a class of problems whose continuous dynamic is well known in the literature and allow a deeper analysis in cases where the theory lacks