A Preliminary Investigation of a Single Shock Impact on Italian Mortality Rates Using STMF Data: A Case Study of COVID-19

Mortality shocks, such as pandemics, threaten the consolidated longevity improvements, confirmed in the last decades for the majority of western countries. Indeed, just before the COVID-19 pandemic, mortality was falling for all ages, with a different behavior according to different ages and countries. It is indubitable that the changes in the population longevity induced by shock events, even transitory ones, affecting demographic projections, have financial implications in public spending as well as in pension plans and life insurance.

Seeking critical nodes in digraphs

The Critical Node Detection Problem (CNDP) consists in finding the set of nodes, defined critical, whose removal maximally degrades the graph. In this work we focus on finding the set of critical nodes whose removal minimizes the pairwise connectivity of a direct graph (digraph). Such problem has been proved to be NP-hard, thus we need efficient heuristics to detect critical nodes in real-world applications. We aim at understanding which is the best heuristic we can apply to identify critical nodes in practice, i.e., taking into account time constrains and real-world networks.

The variational approach to s-fractional heat flows and the limit cases s-+0+and s-+1-

This paper deals with the limit cases for s-fractional heat flows in a cylindrical domain, with homogeneous Dirichlet boundary conditions, as s-+ 0+ and s-+ 1-. We describe the fractional heat flows as minimizing move-ments of the corresponding Gagliardo seminorms, with re-spect to the L2 metric. To this end, we first provide a Gamma-convergence analysis for the s-Gagliardo seminorms as s-+ 0+ and s-+ 1-; then, we exploit an abstract stability result for minimizing movements in Hilbert spaces, with respect to a sequence of Gamma-converging uniformly lambda-convex energy function-als.

Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy

We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities.

Nonlocal finite dffierence discretization of a class of renewal equation models for epidemics

In this paper we consider a non-standard discretization to a Volterra integro-dierential system which includes a number of age-of-infection models in the literature. The aim is to provide a general framework to analyze the proposed scheme for the numerical solution of a class of problems whose continuous dynamic is well known in the literature and allow a deeper analysis in cases where the theory lacks

On the probability of (falsely) connecting two distinct components when learning a GGM

In this paper, we extend the result on the probability of (falsely) connecting two distinct components when learning a GGM (Gaussian Graphical Model) by the joint regression based technique. While the classical method of regression based technique learns the neighbours of each node one at a time through a Lasso penalized regression, its joint modification, considered here, learns the neighbours of each node simultaneously through a group Lasso penalized regression.

Excluded volume effects on active ring polymers

The properties of semiflexible active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain subject to tangential active forces, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. Both phantom polymers and chains with excluded-volume interactions are considered. The size and shape strongly depend on the relative ratio of the persistence length to the ring length as well as on the active force.

Rational QZ Steps with perfect shifts

In this paper we analyze the stability of the problem of performing a rational QZ$step with a shift that is an eigenvalue of a given regular pencil H-lambda K in unreduced Hessenberg-Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg-Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets ``blurred'' and precludes the deflation of the given shift at the top of the pencil.

Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice

We consider a discrete model of planar elasticity where the particles, in the reference configuration, sit on a regular triangular lattice and interact through nearest-neighbor pairwise potentials, with bonds modeled as linearized elastic springs. Within this framework, we introduce plastic slip fields, whose discrete circulation around each tri-angle detects the possible presence of an edge dislocation.

A renewal equation approach to behavioural epidemic models: analytical and numerical issues

Epidemic models structured by the age of infection can be formulated in terms of a system of renewal equations and represent a very general mathematical framework for the analysis of infectious diseases ([1, 2]). Here, we propose a formulation of renawal equations that takes into account of the behavioral response of individuals to infection. We use the so called "information index", which is a distributed delay that summarizes the information available on current and past disease trend, and extend some results regarding compartmental behavioral models [3, 4, 5].