Prisma Noise Coefficients Estimation

The PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral satellite, launched by the Italian Space Agency (ASI) is presently operational on a global scale. The mission includes the hyperspectral imager PRISMA working in the 400-2500 nm spectral range with 234 bands and a panchromatic (PAN) camera (400-750 nm). In the context of this work, we intend to determine the two noise components (photon and thermal noise) and assess SNR with an image based approach.

Effects of Vitamin D Supplementation and Degradation on the Innate Immune System Response: Insights on SARS-CoV-2

Vitamin D has been proven to be a strong stimulator of mechanisms associated with the elimination of pathogens. Because of its recognized effectiveness against viral infections, during SARS-CoV-2 infection, the effects of Vitamin D supplementation have been the object of debate. This study aims to contribute to this debate by the means of a qualitative phenomenological mathematical model in which the role of Vitamin D and its interactions with the innate immune system are explicitly considered.

Pinned Flexible Polymer under Oscillatory Linear Flow

The non-equilibrium structural and dynamical properties of a flexible polymer pinned to a reflecting wall and subject to oscillatory linear flow are studied by numerical simulations. Polymer is confined in two dimensions and is modeled as a bead-spring chain while the interaction with the fluid is described by the Brownian multiparticle collision dynamics. At low strain the polymer is stretched along the flow direction. When increasing strain, chains are completely elongated and compressed against the wall when the flow is reverted.

A Molecular Dynamics Study of the Evolving Melt Front under Gravity

During melting under gravity in the presence of a horizontal thermal gradient, buoyancy-driven convection in the liquid phase affects significantly the evolution of the liquid-solid interface. Due to the obvious engineering interest in understanding and controlling melting processes, fluid dynamicists and applied mathematicians have spent many efforts to model and simulate them numerically. Their endeavors concentrated in the twenty-five years period between the publication of the paper by Brent, Voller & Reid (1988) and that by Mansutti & Bucchignani (2011).

Building a Realistic Simulation of theAtmospheric State in Radiative Transfer

The simulations for the inverse problem of radiative transfer, even if built with a correct Bayesian approach, do not represent the full source of errors present in the experimental data. We point out two categories of errors (atmospheric model errors and non-Gaussian instrumental errors due to the optics and hardware, that are not considered by standard methods. Moreover, we show cases taken from FORUM simulated radiances using an End to End simulator, where se show how the instrument reacts to a non homogeneousneous filed of view.