Sensitivity Analysis of a 2D Stochastic Agent-Based and PDE Diffusion Model for Cancer-on-Chip Experiments

The present work extends a previous paper where an agent-based and two-dimensional partial differential diffusion model was introduced for describing immune cell dynamics (leukocytes) in cancer-on-chip experiments. In the present work, new features are introduced for the dynamics of leukocytes and for their interactions with tumor cells, improving the adherence of the model to what is observed in laboratory experiments. Each system's solution realization is a family of biased random walk trajectories, affected by the chemotactic gradients and in turn affecting them.

Effects of Vitamin D Supplementation and Degradation on the Innate Immune System Response: Insights on SARS-CoV-2

Vitamin D has been proven to be a strong stimulator of mechanisms associated with the elimination of pathogens. Because of its recognized effectiveness against viral infections, during SARS-CoV-2 infection, the effects of Vitamin D supplementation have been the object of debate. This study aims to contribute to this debate by the means of a qualitative phenomenological mathematical model in which the role of Vitamin D and its interactions with the innate immune system are explicitly considered.

Using remote sensing data within an optimal spatiotemporal model for invasive plant management: the case of Ailanthus altissima in the Alta Murgia National Park

We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an invasive alien species with data coming from image processing and expert knowledge. In this study, we implement a spatially explicit optimal control model based on a reaction-diffusion equation which includes an Holling II type functional response term for modeling the density control rate. The model takes into account the budget constraint related to the control program and searches for the optimal effort allocation for the minimization of the invasive alien species density.

Why diffusion-based preconditioning of Richards equation works: spectral analysis and computational experiments at very large scale.

We consider here a cell-centered finite difference approximation of the Richards equation in three dimensions, averaging for interface values the hydraulic conductivity, a highly nonlinear function, by arithmetic, upstream and harmonic means. The nonlinearities in the equation can lead to changes in soil conductivity over several orders of magnitude and discretizations with respect to space variables often produce stiff systems of differential equations.