Modelling sea ice and melt ponds evolution

We present a mathematical model describing the evolution of sea ice and meltwater during summer. The system is described by two coupled partial differential equations for the ice thickness h(x,t) and pond depth w(x,t) fields. The model is similar, in principle, to the one put forward by Luthije et al. (2006), but it features i) a modified melting term, ii) a non-uniform seepage rate of meltwater through the porous ice medium and a minimal coupling with the atmosphere via a surface wind shear term, ?s (Scagliarini et al. 2020).

Advanced network connectivity features and zonal requirements in Covering Location problems

Real-world facility planning problems often require to tackle simultaneously network connectivity and zonal requirements, in order to guarantee an equitable provision of services and an efficient flow of goods, people and information among the facilities. Nonetheless, such challenges have not been addressed jointly so far. In this paper we explore the introduction of advanced network connectivity features and spatial-related requirements within Covering Location Problems.

Some Results on Colored Network Contraction

Networks are pervasive in computer science and in real world applications. It is often useful to leverage distinctive node features to regroup such data in clusters, by making use of a single representative node per cluster. Such contracted graphs can help identify features of the original networks that were not visible before. As an example, we can identify contiguous nodes having the same discrete property in a social network. Contracting a graph allows a more scalable analysis of the interactions and structure of the network nodes.

Simultaneous non-parametric regression in RADWT dictionaries

A new technique for nonparametric regression of multichannel signals is presented. The technique is based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. In particular, two different frames are obtained by two RADWT with different Q-factors that give sparse representations of functions with low and high resonance.

Non-invasive investigation of three paintings attributed to Cavalier d'Arpino by means of ED-XRF, FORS and Multispectral Imaging

The aim of this work was to characterize the palette and painting technique used for the realization of three late sixteenth century paintings from "Galleria dell'Accademia Nazionale di San Luca" in Rome attributed to Cavalier d'Arpino (Giuseppe Cesari), namely "Cattura di Cristo" (Inv. 158), "Autoritratto" (Inv. 546) and "Perseo e Andromeda" (Inv. 221).

Exploiting the Abstract Calculus Pattern for the Integration of Ordinary Differential Equations for Dynamics Systems: An Object-Oriented Programming Approach in Modern Fortran

This manuscript relates to the exploiting of the abstract calculus pattern (ACP) for the (numerical) solution of ordinary differential equation (ODEs) systems, which are ubiquitous mathematical formulations of many physical (dynamical) phenomena. We present FOODIE, a software suite aimed to numerically solve ODE problems by means of a clear, concise, and efficient abstract interface.

jewel: a novel method for joint node-wise estimation of multiple Gaussian graphical models

Graphical models are well-known mathematical objects for describing conditional dependency relationships between random variables of a complex system. Gaussian graphical models refer to the case of multivariate Gaussian variable for which the graphical model is encoded through the support of corresponding inverse covariance (precision) matrix. We consider a problem of estimating multiple Gaussian graphical models from high- dimensional data sets under the assumption that they share the same conditional independence structure. However, the individual correlation matrices can differ.