Some Results on Colored Network Contraction

Networks are pervasive in computer science and in real world applications. It is often useful to leverage distinctive node features to regroup such data in clusters, by making use of a single representative node per cluster. Such contracted graphs can help identify features of the original networks that were not visible before. As an example, we can identify contiguous nodes having the same discrete property in a social network. Contracting a graph allows a more scalable analysis of the interactions and structure of the network nodes.

The impact of ROI extraction method for MEG connectivity estimation: Practical recommendations for the study of resting state data.

Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis typically requires regions of interest (ROI)-based extraction of measures. M/EEG ROI-derived source activity can be treated in different ways. For instance, it is possible to average each ROI's time series prior to calculating connectivity measures. Alternatively one can compute connectivity maps for each element of the ROI, prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity estimation is still unclear.

Penalized wavelet nonparametric univariate logistic regression for irregular spaced data

This paper concerns the study of a non-smooth logistic regression function. The focus is on a high-dimensional binary response case by penalizing the decomposition of the unknown logit regression function on a wavelet basis of functions evaluated on the sampling design. Sample sizes are arbitrary (not necessarily dyadic) and we consider general designs. We study separable wavelet estimators, exploiting sparsity of wavelet decompositions for signals belonging to homogeneous Besov spaces, and using efficient iterative proximal gradient descent algorithms.

Controlling release from encapsulated drug-loaded devices: insights from modeling the dissolution front propagation

Dissolution of drug from its solid form to a dissolved form is an important consideration in the design and optimization of drug delivery devices, particularly owing to the abundance of emerging compounds that are extremely poorly soluble. When the solid dosage form is encapsulated, for example by the porous walls of an implant, the impact of the encapsulant drug transport properties is a further confounding issue. In such a case, dissolution and diffusion work in tandem to control the release of drug.

Numerical simulation of a compressible gas flow in porous media bioremendiation

In a subsoil bioremediation intervention air or oxygen is injected in the polluted region and then a model for unsaturated porous media it is required, based on the theory of the dynamics of multiphase fluids in porous media. In order to optmize the costs of the intervention it is useful to consider the gas as compressible and this fact introduces nonlinearity in the mathematical model. The physical problem is described by a system of equations and the unknowns are: pollutant; bacteria concentration; oxygen saturation and oxygen pressure.

Advanced network connectivity features and zonal requirements in Covering Location problems

Real-world facility planning problems often require to tackle simultaneously network connectivity and zonal requirements, in order to guarantee an equitable provision of services and an efficient flow of goods, people and information among the facilities. Nonetheless, such challenges have not been addressed jointly so far. In this paper we explore the introduction of advanced network connectivity features and spatial-related requirements within Covering Location Problems.

Innovative remote-sensed thermodynamical indices to identify vegetation stress and surface dryness: application to southern Italy over the last decade

Surface and vegetation monitoring is a key activity in analyzing and understanding how climate change is impacting natural resources. Moreover, identifying vegetation stress using remote-sensed data has proven to be essential in assessing said understanding, as well as in the effort to prevent or act upon extreme phenomena, such as premature land and forest dryness due to summer heatwaves in the Mediterranean area.

A Fast Retrieval Model for Synergistic Inversion of Nadir / Zenith Spectral Radiance Measurements

Starting from 2019, the Italian Space Agency (ASI) is supporting dedicated projects for the development of new methods, tools and competences for the interpretation and the exploitation of the future measurements of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) experiment. FORUM will be the ninth Earth Explorer mission of the European Space Agency, scheduled for launch on a polar orbiting satellite in 2027.