Numerical simulation of a compressible gas flow in porous media bioremendiation

In a subsoil bioremediation intervention air or oxygen is injected in the polluted region and then a model for unsaturated porous media it is required, based on the theory of the dynamics of multiphase fluids in porous media. In order to optmize the costs of the intervention it is useful to consider the gas as compressible and this fact introduces nonlinearity in the mathematical model. The physical problem is described by a system of equations and the unknowns are: pollutant; bacteria concentration; oxygen saturation and oxygen pressure.

Modelling sea ice and melt ponds evolution

We present a mathematical model describing the evolution of sea ice and meltwater during summer. The system is described by two coupled partial differential equations for the ice thickness h(x,t) and pond depth w(x,t) fields. The model is similar, in principle, to the one put forward by Luthije et al. (2006), but it features i) a modified melting term, ii) a non-uniform seepage rate of meltwater through the porous ice medium and a minimal coupling with the atmosphere via a surface wind shear term, ?s (Scagliarini et al. 2020).

Highly automated dipole estimation (HADES)

Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation.

A Fast Retrieval Model for Synergistic Inversion of Nadir / Zenith Spectral Radiance Measurements

Starting from 2019, the Italian Space Agency (ASI) is supporting dedicated projects for the development of new methods, tools and competences for the interpretation and the exploitation of the future measurements of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) experiment. FORUM will be the ninth Earth Explorer mission of the European Space Agency, scheduled for launch on a polar orbiting satellite in 2027.

Efficient GPU parallelization of adaptive mesh refinement technique for high-order compressible solver with immersed boundary

A new, highly parallelized, adaptive mesh refinement (AMR) library, equipped with an accurate immersed boundary (IB) method for solving the compressible Navier-Stokes system is presented. The library, named ADAM, is designed to efficiently exploit modern exascale GPU-accelerated supercomputers and it is implemented with a highly modular structure in order to make easy to leverage it for a wide range of CFD applications.

Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed.

An in-vivo validation of ESI methods with focal sources

Electrophysiological source imaging (ESI) aims at reconstructing the precise origin of brain activity from measurements of the electric field on the scalp. Across laboratories/research centers/hospitals, ESI is performed with different methods, partly due to the ill-posedness of the underlying mathematical problem. However, it is difficult to find systematic comparisons involving a wide variety of methods. Further, existing comparisons rarely take into account the variability of the results with respect to the input parameters.