Euler polynomials and the related quadrature rule

The use of Euler polynomials and Euler numbers allows us to construct a quadrature rule similar to the well-known Euler--MacLaurin quadrature formula, using Euler (instead of Bernoulli) numbers, and even (instead of odd) order derivatives of a given function evaluated at the extrema of the considered interval. An expression of the remainder term and numerical examples are also given. © 2001, Heldermann Verlag. All rights reserved.

Revisitation of a Tartar's result on a semilinear hyperbolic system with null condition

We revisit a method introduced by Tartar for proving global well-posedness of a semilinear hyperbolic system with null quadratic source in one space dimension. A remarkable point is that, since no dispersion effect is available for 1D hyperbolic systems, Tartar's approach is entirely based on spatial localization and finite speed of propagation.

Approximation of Finite Hilbert and Hadamard Transforms by Using Equally Spaced Nodes

In the present paper, we propose a numerical method for the simultaneous approximation of the finite Hilbert and Hadamard transforms of a given function f, supposing to know only the samples of f at equidistant points. As reference interval we consider [-1,1] and as approximation tool we use iterated Boolean sums of Bernstein polynomials, also known as generalized Bernstein polynomials. Pointwise estimates of the errors are proved, and some numerical tests are given to show the performance of the procedures and the theoretical results.

Lattice Boltzmann simulations capture the multiscale physics of soft flowing crystals

The study of the underlying physics of soft flowing materials depends heavily on numerical simulations, due to the complex structure of the governing equations reflecting the competition of concurrent mechanisms acting at widely disparate scales in space and time. A full-scale computational modelling remains a formidable challenge since it amounts to simultaneously handling six or more spatial decades in space and twice as many in time.

Uniform weighted approximation on the square by polynomial interpolation at Chebyshev nodes

The paper deals with de la Vallee Poussin type interpolation on the square at tensor product Chebyshev zeros of the first kind. The approximation is studied in the space of locally continuous functions with possible algebraic singularities on the boundary, equipped with weighted uniform norms. In particular, simple necessary and sufficient conditions are proved for the uniform boundedness of the related Lebesgue constants. Error estimates in some Sobolev-type spaces are also given.

Soft channel formation and symmetry breaking in exotic active emulsions

We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained.

An employee voice framework as a tool to compare employees and managers viewpoints: the case of the Italian National Research Council

Ever more organizations, both private and public, are placing a greater importance on employee engagement as a means of generating better organizational climate and higher levels of performance. Actually, employee engagement is part of the strategic management of high performance organization, which pay always more attention to human resource initiatives. Moreover, forms of involvement in the decision processes make more motivating and more satisfying the activity for employees, as they create the conditions for greater inspiration and, in turn, contribute to their well-being.