Modeling drug delivery from multiple emulsions
We present a mechanistic model of drug release from a multiple emulsion into an external surrounding fluid. We consider a single multilayer droplet where the drug kinetics are described by a pure diffusive process through different liquid shells. The multilayer problem is described by a system of diffusion equations coupled via interlayer conditions imposing continuity of drug concentration and flux. Mass resistance is imposed at the outer boundary through the application of a surfactant at the external surface of the droplet.
Towards a comprehensive model for the impact of traffic patterns on air pollution
The impact of vehicular traffic on society is huge and multifaceted, including economic, social, health and environmental aspects. The problems is complex and hard to model since it requires to consider traffic patterns, air pollutant emissions, and the chemical reactions and dynamics of pollutants in the low atmosphere. This paper aims at exploring a comprehensive simulation tool ranging from vehicular traffic all the way to environmental impact.
Understanding Mass Transfer Directions via Data-Driven Models with Application to Mobile Phone Data
The aim of this paper is to solve an inverse problem which regards a mass moving in a bounded domain. We assume that the mass moves following an unknown velocity field and that the evolution of the mass density can be described by a partial differential equation, which is also unknown. The input data of the problems are given by some snapshots of the mass distribution at certain times, while the sought output is the velocity field that drives the mass along its displacement.
Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system
Effective treatment of glioma and other central nervous system (CNS) diseases is hindered by the presence of the blood-brain barrier (BBB). A novel nano-delivery vehicle system composed of PLGA-lysoGM1/DOX micelles was developed to cross the BBB for CNS treatment. We have shown that doxorubicin (DOX) as a model drug encapsulated in PLGA-lysoGM1 micelles can achieve up to 3.8% loading efficiency and 61.6% encapsulation efficiency by the orthogonal test design.
Optimal Control of Invasive Species with Budget Constraint: Qualitative Analysis and Numerical Approximation
The containment of the invasive species is a widespread problem in the environmental management, with a significant economic impact. We analyze an optimal control model which aims to find the best temporal resource allocation strategy for the removal of an invasive species. We derive the optimality system in the state and control variables and we use the phase-space analysis to provide qualitative insights about the behavior of the optimal solution.
Shear dynamics of confined bijels
Bicontinuous interfacially jammed emulsion gels ("bijels") represent a new class of soft materials made of a densely packed monolayer of solid particles sequestered at the interface of a bicontinuous fluid. Their mechanical properties are relevant to many applications, such as catalysis, energy conversion, soft robotics, and scaffolds for tissue engineering. While their stationary bulk properties have been covered in depth, much less is known about their behavior in the presence of an external shear.
Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method
The aim of this paper is to prove the strong convergence of the solutions to a vector-BGK model under the diffusive scaling to the incompressible Navier-Stokes equations on the two-dimensional torus. This result holds in any interval of time [0,T], with T>0. We also provide the global in time uniform boundedness of the solutions to the approximating system. Our argument is based on the use of local in time H-estimates for the model, established in a previous work, combined with the L-relative entropy estimate and the interpolation properties of the Sobolev spaces.