Numerical simulations of self-diffusiophoretic colloids at fluid interfaces

The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesoscopic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids.

Identification of time-varying inaccessible thermal conductance from data at the boundary

A composite specimen, made of two slabs and an interface A is heated through one of its sides S, in order to evaluate the thermal conductance H of A. The direct model consists of a system of Initial Boundary Value Problems completed by suitable transmission conditions. Thanks to the properties of multilayer diffusion, we reduce the problem to the slab between A and S only. In this case evaluating the thermal resistance of A means to identify a coefficient in a Robin boundary condition. We evaluate H numerically by means of Thin Plate Approximation.

Characterization of a vertical crack using Laser Spot Thermography

This paper deals with the solution of an inverse problem for the heat equation aimed at nondestructive evaluation of fractures, emerging on the accessible surface of a slab, by means of Active Thermography. In real life, this surface is heated with a laser and its temperature is measured for a time interval by means of an infrared camera. A fundamental step in iterative inversion methods is the numerical solution of the underlying direct mathematical model.

Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia

Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia.

Computing functions of very large matrices with small TT/QTT ranks by quadrature formulas

The computation of matrix functions using quadrature formulas and rational approximations of very large structured matrices using tensor trains (TT), and quantized tensor trains (QTT) is considered here. The focus is on matrices with a small TT/QTT rank. Some analysis of the error produced by the use of the TT/QTT representation and the underlying approximation formula used is also provided.

A NONLINEAR PARABOLIC-HYPERBOLIC SYSTEM FOR CONTACT INHIBITION AND A DEGENERATE PARABOLIC FISHER KPP EQUATION

We consider a mathematical model describing population dynamics of normal and abnormal cell densities with contact inhibition of cell growth from a theoretical point of view. In the first part of this paper, we discuss the global existence of a solution satisfying the segregation property in one space dimension for general initial data. Here, the term segregation property means that the different types of cells keep spatially segregated when the initial densities are segregated.

High performance implementations of the 2D Ising model on GPUs

We present and make available novel implementations of the two-dimensional Ising model that is used as a benchmark to show the computational capabilities of modern Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach.

Beyond Fact-Checking: Network Analysis Tools for Monitoring Disinformation in Social Media

Operated by the H2020 SOMA Project, the recently established Social Observatory for Disinformation and Social Media Analysis supports researchers, journalists and fact-checkers in their quest for quality information. At the core of the Observatory lies the DisInfoNet Toolbox, designed to help a wide spectrum of users understand the dynamics of (fake) news dissemination in social networks. DisInfoNet combines text mining and classification with graph analysis and visualization to offer a comprehensive and user-friendly suite.

Strong ergodicity breaking in aging of mean-field spin glasses

Out-of-equilibrium relaxation processes show aging if they become slower as time passes. Aging processes are ubiquitous and play a fundamental role in the physics of glasses and spin glasses and in other applications (e.g., in algorithms minimizing complex cost/loss functions). The theory of aging in the out-of-equilibrium dynamics of mean-field spin glass models has achieved a fundamental role, thanks to the asymptotic analytic solution found by Cugliandolo and Kurchan.

Provable Storage Medium for Data Storage Outsourcing

In remote storage services, delays in the time to retrieve data can cause economic losses to the data owners. In this paper, we address the problem of properly establishing specific clauses in the service level agreement (SLA), intended to guarantee a short and predictable retrieval time. Based on the rationale that the retrieval time mainly depends on the storage media used at the server side, we introduce the concept of Provable Storage Medium (PSM), to denote the ability of a user to efficiently verify that the provider is complying to this aspect of the SLA.