Integer lattice dynamics for Vlasov-Poisson

We revisit the integer lattice (IL) method to numerically solve the Vlasov-Poisson equations, and show that a slight variant of the method is a very easy, viable, and efficient numerical approach to study the dynamics of self-gravitating, collisionless systems. The distribution function lives in a discretized lattice phase-space, and each time-step in the simulation corresponds to a simple permutation of the lattice sites. Hence, the method is Lagrangian, conservative, and fully time-reversible.

Roughness as a Route to the Ultimate Regime of Thermal Convection

We use highly resolved numerical simulations to study turbulent Rayleigh-Benard convection in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr = 1 and Ra = [4 x 10(6), 3 x 10(9)]. By varying the wavelength. at a fixed amplitude, we find an optimal wavelength lambda(opt) for which the Nusselt-Rayleigh scaling relation is (Nu - 1 proportional to Ra-0.483), maximizing the heat flux. This is consistent with the upper bound of Goluskin and Doering [J. Fluid Mech.

ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing.

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown.

Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport

Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability.

The vortex-driven dynamics of droplets within droplets

Understanding the fluid-structure interaction is crucial for an optimal design and manufacturing of soft mesoscale materials. Multi-core emulsions are a class of soft fluids assembled from cluster configurations of deformable oil-water double droplets (cores), often employed as building-blocks for the realisation of devices of interest in bio-technology, such as drug-delivery, tissue engineering and regenerative medicine.

Relativistic Tidal Acceleration of Astrophysical Jets

Within the framework of general relativity, we investigate the tidal acceleration of astrophysical jets relative to the central collapsed configuration ("Kerr source"). To simplify matters, we neglect electromagnetic forces throughout; however, these must be included in a complete analysis. The rest frame of the Kerr source is locally defined via the set of hypothetical static observers in the spacetime exterior to the source.

On the regularity of solutions to a class of degenerate PDE's with lower order terms

In this paper we establish the boundedness and the higher differentiability of solutions to the {div(A(x,Du))+b(x)|u(x)|u(x)=fin ?u=0on ?? under a Sobolev assumption on the partial map x->A(x,?). The novelty here is that we deal with degenerate elliptic operator A(x,?) with p-growth, p>=2, with respect to the gradient variable, in presence of lower order terms. The interplay between b(x) and f(x), introduced in ([1]), gives a regularizing effect also in the degenerate elliptic setting.

Macroscopic and multi-scale models for multi-class vehicular dynamics with uneven space occupancy: A case study

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density.

Mesoscale modelling of near-contact interactions for complex flowing interfaces

We present a mesoscale kinetic model for multicomponent flows, augmented with a short range forcing term, aimed at describing the combined effect of surface tension and near-contact interactions operating at the fluid interface level. Such a mesoscale approach is shown to (i) accurately capture the complex dynamics of bouncing colliding droplets for different values of the main governing parameters, (ii) predict quantitatively the effective viscosity of dense emulsions in micro-channels and (iii) simulate the formation of the so-called soft flowing crystals in microfluidic focusers.