Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices

Background: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. Results: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions.

Automatic coarsening in Algebraic Multigrid utilizing quality measures for matching-based aggregations Pasqua D'Ambra, Fabio Durastante, Salvatore Filippone, Ludmil Zikatanov

In this paper, we discuss the convergence of an Algebraic MultiGrid (AMG) method for general symmetric positive-definite matrices. The method relies on an aggregation algorithm, named coarsening based on compatible weighted matching, which exploits the interplay between the principle of compatible relaxation and the maximum product matching in undirected weighted graphs.

A candidate multi-epitope vaccine against SARS-CoV-2

In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2.

Passive Bistatic Ground-Based Synthetic Aperture Radar: Concept, System, and Experiment Results

A passive bistatic ground-based synthetic aperture radar (PB-GB-SAR) system without a dedicated transmitter has been developed by using commercial-off-the-shelf (COTS) hardware for local-area high-resolution imaging and displacement measurement purposes. Different from the frequency-modulated or frequency-stepped continuous wave signal commonly used by GB-SAR, the continuous digital TV signal broadcast by a geostationary satellite has been adopted by PB-GB-SAR.