Circuits and systems for high-throughput biology

The importance of circuits and systems for high-throughput biological data acquisition in biomedical research are discussed. High-throughput biological data acquisition and processing technologies have shifted the focus of biological research from the the traditional experimental science to that of information science. Powerful computation and communication means can be applied to a very large amount of apparently incoherent data coming from biomedical research.

TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders

The study of complex hereditary diseases is a very challenging area of research. The expanding set of in silico approaches offers a flourishing ground for the acceleration of meaningful findings in this area by exploitation of rich and diverse sources of omic data. These approaches are cheap, flexible, extensible, often complementary and can continuously integrate new information and tests to improve the selection of genes responsible for hereditary diseases.

A non standard finite difference model for a class of renewal equations in epidemiology

Mathematical models based on non-linear integral and integro-differential equations are gaining increasing attention in mathematical epidemiology due to their ability to incorporate the past infection dynamic into its current development. This property is particularly suitable to represent the evolution of diseases where the dependence of infectivity on the time since becoming infected plays a crucial role.

AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching

We describe preliminary results from a multiobjective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on highend parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors.

Mining Gene Sets for Measuring Similarities

In recent years, the development of high throughput devices for the massive parallel analyses of genomic data has lead to the generation of large amount of new biological evidences and has triggered the proliferation of data mining algorithms for the extraction of meaningful information. Microarrays for gene expression analyses are part of this revolution and provide important insight in molecular biology often in the form of coherent sets of genes representing previously uncharacterized processes.

Extracting weights from edge directions to find communities in directed networks

Community structures are found to exist ubiquitously in real-world complex networks. We address here the problem of community detection in directed networks. Most of the previous literature ignores edge directions and applies methods designed for community detection in undirected networks, which discards valuable information and often fails when different communities are defined on the basis of incoming and outgoing edges. We suggest extracting information about edge directions using a PageRank random walk and translating such information into edge weights.