A corrected normalized mutual information for performance evaluation of community detection

Normalized mutual information (NMI) is a widely used metric for performance evaluation of community detection methods, recently proven to be affected by finite size effects. To overcome this issue, a metric called relative normalized mutual information (rNMI) has been proposed. However, we show here that rNMI is still a biased metric and may lead, under given circumstances, to erroneous conclusions. The bias is an effect of the so-called reverse finite size effect.

MANIA: A Gene Network Reverse Algorithm for Compounds Mode-of-Action and Genes Interactions Inference

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles AND (ii) mode-of-action of the components that can trigger changes in the system.

PRISMA L1 and L2 Performances within the PRISCAV Project: The Pignola Test Site in Southern Italy

In March 2019, the PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyper-spectral satellite was launched by the Italian Space Agency (ASI), and it is currently operational on a global basis. The mission includes the hyperspectral imager PRISMA working in the 400-2500 nm spectral range with 237 bands and a panchromatic (PAN) camera (400-750 nm). This paper presents an evaluation of the PRISMA top-of-atmosphere (TOA) L1 products using different in situ measurements acquired over a fragmented rural area in Southern Italy (Pignola) between October 2019 and July 2021.

A non standard finite difference model for a class of renewal equations in epidemiology

Mathematical models based on non-linear integral and integro-differential equations are gaining increasing attention in mathematical epidemiology due to their ability to incorporate the past infection dynamic into its current development. This property is particularly suitable to represent the evolution of diseases where the dependence of infectivity on the time since becoming infected plays a crucial role.

Enhanced pClustering and its applications to gene expression data

Clustering has been one of the most popular methods to discover useful biological insights from DNA microarray. An interesting paradigm is simultaneous clustering of both genes and experiments. This "biclustering "paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a subset of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical advantages, this technique has been rarely applied to actual gene expression data analysis.

Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams

The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence.