Particle-based modeling of living actin filaments in an optical trap
We report a coarse-grained molecular dynamics simulation study of a bundle of parallel actin filaments under supercritical conditions pressing against a loaded mobile wall using a particle-based approach where each particle represents an actin unit. The filaments are grafted to a fixed wall at one end and are reactive at the other end, where they can perform single monomer (de) polymerization steps and push on a mobile obstacle.