Z-controlling with awareness a SEIR model with overexposure. An application to Covid-19 epidemic

We apply the Z-control approach to a SEIR model including a overexposure mechanism and consider awareness as a time-dependent variable whose dynamics is not assigned a priori. Exploiting the potential of awareness to produce social distancing and self-isolation among susceptibles, we use it as an indirect control on the class of infective individuals and apply the Z-control approach to detect what trend awareness must display over time in order to eradicate the disease.

Fractional Orlicz-Sobolev spaces and their limits

We establish versions for fractional Orlicz-Sobolev seminorms, built upon Young functions, of the Bourgain-Brezis-Mironescu theorem on the limit as s ->1^-, and of the Maz'ya-Shaposhnikova theorem on the limit as s->0^-, dealing with classical fractional Sobolev spaces. As regards the limit as s ->1^-, Young functions with an asymptotic linear growth are also considered in connection with the space of functions of bounded variation. Concerning the limit as s->0^+, Young functions fulfilling the \Delta_2-condition are admissible.

Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem

We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential if , if , 0 if .

Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors

This work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station.

Theoretical model for diffusion-reaction based drug delivery from a multilayer spherical capsule

Controlled drug delivery from a multilayer spherical capsule is used for several therapeutic applications. Developing a theoretical understanding of mass transfer in the multilayer capsule is critical for understanding and optimizing targeted drug delivery. This paper presents an analytical solution for the mass transport problem in a general multilayer sphere involving diffusion as well as drug immobilization in various layers due to binding reactions.

GROUND STATES OF A TWO PHASE MODEL WITH CROSS AND SELF ATTRACTIVE INTERACTIONS

We consider a variational model for two interacting species (or phases), subject to cross and self attractive forces. We show existence and several qualitative properties of minimizers. Depending on the strengths of the forces, different behaviors are possible: phase mixing or phase separation with nested or disjoint phases. In the case of Coulomb interaction forces, we characterize the ground state configurations.

AMG Preconditioners for Linear Solvers towards Extreme Scale

Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic Multigrid (AMG) Preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability and robustness on extreme scale problems.