An employee voice framework as a tool to compare employees and managers viewpoints: the case of the Italian National Research Council

Ever more organizations, both private and public, are placing a greater importance on employee engagement as a means of generating better organizational climate and higher levels of performance. Actually, employee engagement is part of the strategic management of high performance organization, which pay always more attention to human resource initiatives. Moreover, forms of involvement in the decision processes make more motivating and more satisfying the activity for employees, as they create the conditions for greater inspiration and, in turn, contribute to their well-being.

Comparing effective-one-body Hamiltonians for spin-aligned coalescing binaries

TEOBResumS and SEOBNRv4 are the two existing semianalytical gravitational waveform models for spin-aligned coalescing black hole binaries based on the effective-one-body (EOB) approach. They are informed by numerical relativity simulations and provide the relative dynamics and waveforms from early inspiral to plunge, merger, and ringdown. The central building block of each model is the EOB resummed Hamiltonian. The two models implement different Hamiltonians that are both deformations of the Hamiltonian of a test spinning black hole moving around a Kerr black hole.

Understanding Mass Transfer Directions via Data-Driven Models with Application to Mobile Phone Data

The aim of this paper is to solve an inverse problem which regards a mass moving in a bounded domain. We assume that the mass moves following an unknown velocity field and that the evolution of the mass density can be described by a partial differential equation, which is also unknown. The input data of the problems are given by some snapshots of the mass distribution at certain times, while the sought output is the velocity field that drives the mass along its displacement.

Multiparticle collision dynamics for fluid interfaces with near-contact interactions

We present an extension of the multiparticle collision dynamics method for flows with complex interfaces, including supramolecular near-contact interactions mimicking the effect of surfactants. The new method is demonstrated for the case of (i) short range repulsion of droplets in close contact, (ii) arrested phase separation, and (iii) different pattern formation during spinodal decomposition of binary mixtures.

A regularization model for stereo vision with controlled continuity

The problem of the computation of stereo disparity is approaehed as a mathematically ill-posed problem by using regularization theory. A controlled continuity constraint which provides a local spatial control over the smoothness of the solution enables the problem to be regularized while preserving the disparity discontinuities. The discontinuities are localized during the regularization process by examining the size of the disparity gradient at the gray value edges.

On fractional Orlicz-Sobolev spaces

Some recent results on the theory of fractional Orlicz-Sobolev spaces are surveyed. They concern Sobolev type embeddings for these spaces with an optimal Orlicz target, related Hardy type inequalities, and criteria for compact embeddings. The limits of these spaces when the smoothness parameter s in (0, 1) tends to either of the endpoints of its range are also discussed. This note is based on the papers [1, 2, 3, 4], where additional material and proofs can be found.

On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces

An extended version of the Maz'ya-Shaposhnikova theorem on the limit as s -> 0+ of the Gagliardo-Slobodeckij fractional seminorm is established in the Orlicz space setting. Our result holds in fractional Orlicz-Sobolev spaces associated with Young functions satisfying the \Delta2-condition, and, as shown by counterexamples, it may fail if this condition is dropped.