Cylindrical gravitational waves: C-energy, super-energy and associated dynamical effects

The energy content of cylindrical gravitational wave spacetimes is analyzed by considering two local descriptions of energy associated with the gravitational field, namely those based on the C-energy and the Bel-Robinson super-energy tensor. A Poynting-Robertson-like effect on the motion of massive test particles, beyond the geodesic approximation, is discussed, allowing them to interact with the background field through an external force which accounts for the exchange of energy and momentum between particles and waves.

HDAC2-dependent miRNA signature in acute myeloid leukemia

Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting-edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory network in U937 leukemic cells.

Modeling pattern formation in soft flowing crystals

We present a mesoscale representation of near-contact interactions between colliding droplets which permits one to reach up to the scale of full microfluidic devices, where such droplets are produced. The method is demonstrated for the case of colliding droplets and the formation of soft flowing crystals in flow-focusing microfluidic devices. This model may open up the possibility of multiscale simulation of microfluidic devices for the production of new droplet and bubble-based mesoscale porous materials.

Modelling drug release from composite capsules and nanoparticles

We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules.

The sparse method of simulated quantiles: An application to portfolio optimization

The sparse multivariate method of simulated quantiles (S-MMSQ) is applied to solve a portfolio optimization problem under value-at-risk constraints where the joint returns follow a multivariate skew-elliptical stable distribution. The S-MMSQ is a simulation-based method that is particularly useful for making parametric inference in some pathological situations where the maximum likelihood estimator is difficult to compute.

Scattering of uncharged particles in the field of two extremely charged black holes

We investigate the motion of uncharged particles scattered by a binary system consisting of extremely charged black holes in equilibrium as described by the Majumdar-Papapetrou solution. We focus on unbound orbits confined to the plane containing both black holes. We consider the two complementary situations of particles approaching the system along a direction parallel to the axis where the black holes are displaced and orthogonal to it.