Unsupervised Classification of Routes and Plates from the Trap-2017 Dataset
This paper describes the efforts, pitfalls, and successes of applying unsupervised classification techniques to analyze the Trap-2017 dataset. Guided by the informative perspective on the nature of the dataset obtained through a set of specifically-written perl/bash scripts, we devised an automated clustering tool implemented in python upon openly-available scientific libraries. By applying our tool on the original raw data it is possibile to infer a set of trending behaviors for vehicles travelling over a route, yielding an instrument to classify both routes and plates.