
Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics
Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered.
Switching dynamics in cholesteric liquid crystal emulsions
In this work we numerically study the switching dynamics of a 2D cholesteric emulsion droplet immersed in an isotropic fluid under an electric field, which is either uniform or rotating with constant speed. The overall dynamics depend strongly on the magnitude and on the direction (with respect to the cholesteric axis) of the applied field, on the anchoring of the director at the droplet surface and on the elasticity.
DruSiLa: an integrated, in-silico disease similarity-based approach for drug repurposing
The importance of faster drug development has never been more evident than in present time when the whole world is struggling to cope up with the COVID-19 pandemic. At times when timely development of effective drugs and treatment plans could potentially save millions of lives, drug repurposing is one area of medicine that has garnered much of research interest. Apart from experimental drug repurposing studies that happen within wet labs, lot many new quantitative methods have been proposed in the literature.
Wake flow past a plate with spoiler II: Gravity effects
The effects of transverse gravity on steady flow past a split plate are investigated, by adopting the wake model proposed in the preceding paper (I). The existence and uniqueness of the solution as well as the convergence of an iteration process involving the free streamlines are proved for large Froude numbers by means of the Banach contraction mapping principle using Lipschitz norms. © 1986 Birkhäuser Verlag.
Motility-induced phase separation and coarsening in active matter
Active systems, or active matter, are self-driven systems that live, or function, far from equilibrium - a paradigmatic example that we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The non-equilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena.
Asymptotic solutions of non-linear implicit Volterra discrete equations
In this paper we study non-linear implicit Volterra discrete equations of convolution
type and give sufficient conditions for their solutions to converge to a finite limit. These
results apply to the stability analysis of linear methods for implicit Volterra integral
equations. An application is given to the numerical study of the final size of an epidemic
modelled by renewal equations
PROCONSUL: PRObabilistic exploration of CONnectivity Significance patterns for disease modULe discovery
The possibility to computationally prioritize candi- date disease genes capitalizing on existing information has led to a speedup in the discovery of new methods. Many gene discovery techniques exploit network data, like protein-protein interactions (PPIs), in order to extract knowledge from the network structure relying on several network metrics. We here present PROCONSUL, a method that builds on top of the concept of connectivity significance (CS) and exploits the idea of probabilistic exploration of the space of putative disease genes.
Shear dynamics of an inverted nematic emulsion
Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of the nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow.
Machine learning assisted droplet trajectories extraction in dense emulsions
This work analyzes trajectories obtained by YOLO and DeepSORT algorithms of dense emulsion systems simulated via lattice Boltzmann methods. The results indicate that the individual droplet's moving direction is influenced more by the droplets immediately behind it than the droplets in front of it. The analysis also provide hints on constraints of a dynamical model of droplets for the dense emulsion in narrow channels.





