Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine

Abstract The hydrodynamic characterization of control appendages for ship hulls is of paramount importance for the assessment of maneuverability characteristics. However, the accurate numerical simulation of turbulent flow around a fully appended maneuvering vessel is a challenging task, because of the geometrical complexity of the appendages and of the complications connected to their movement during the computation. In addition, the accurate description of the flow within the boundary layer is important in order to estimate correctly the forces acting on each portion of the hull.

On the Aerodynamic Heating of VEGA Launcher: Compressible Chimera Navier-Stokes Simulation with Complex Surfaces

The results of accurate compressible Navier-Stokes simulations of aerodynamic heating of the Vega launcher are presented. Three selected steady conditions of the Vega mission profile are considered: the first corresponding to the altitude of 18 km, the second to 25 km and the last to 33 km. The numerical code is based on the mathematical model described by the Favre-Average-Navier-Stokes equations; the turbulent model chosen for closure is the one-equation model by Spalart-Allmaras.

From generalized kinetic theory to discrete velocity modeling of vehicular traffic. A stochastic game approach

This work reports on vehicular traffic modeling by methods of the discrete kinetic theory. The purpose is to detail a reference mathematical framework for some discrete velocity kinetic models recently introduced in the literature, which proved capable of reproducing interesting traffic phenomena without using experimental information as modeling assumptions. To this end, we firstly derive a general discrete velocity kinetic framework with binary nonlocal interactions.

Modeling rationality to control self-organization of crowds: an environmental approach

In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness of the individuals.