Copepods encounter rates from a model of escape jump behaviour in turbulence

A key ecological parameter for planktonic copepod studies is their encounter rates within the same population as well as with other species. The encounter rate is partly determined by copepod's swimming behaviour and is strongly influenced by turbulence of the surrounding environment. A distinctive feature of copepods' motility is their ability to perform quick displacements, often termed jumps, by means of powerful swimming strokes. Such a reaction has been associated to an escape behaviour from flow disturbances due to predators or other external signals.

OPTIMAL CONTROL OF INVASIVE SPECIES

The containment of the invasive species is a widespread problem in the environmental management, with a significant economic impact. We analyze an optimal control model which aims to find the best temporal resource allocation strategy for the removal of an invasive species. We study the existence and uniqueness of the optimal solution when both initial and final conditions on the state variable are fixed.

Geometry of tracer trajectories in rotating turbulent flows

The geometry of passive tracer trajectories is studied in two different types of rotating turbulent flows; rotating Rayleigh-Bénard convection (RBC; experiments and direct numerical simulations) and rotating electromagnetically forced turbulence (EFT; experiments). This geometry is fully described by the curvature and torsion of trajectories, and from these geometrical quantities we can subtract information on the typical flow structures at different rotation rates.

Corner-transport-upwind lattice Boltzmann model for bubble cavitation

Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 x 6144 nodes).

LBsoft: A parallel open-source software for simulation of colloidal systems

We present LBsoft, an open-source software developed mainly to simulate the hydro-dynamics of colloidal systems based on the concurrent coupling between lattice Boltzmann methods for the fluid and discrete particle dynamics for the colloids. Such coupling has been developed before, but, to the best of our knowledge, no detailed discussion of the programming issues to be faced in order to attain efficient implementation on parallel architectures, has ever been presented to date.

Distribution and trend estimation of MIPAS ESA V7 carbon tetrachloride data and preliminary results of variability of new species derived with MIPAS ESA V8 processor

MIPAS on ENVISAT performed almost continuous measurements of atmospheric composition for approximately 10 years, from June 2002 to April 2012. ESA processor, based on the algorithm ORM (Optimized Retrieval Model), originally designed for the Near Real Time analysis, is currently used for the reanalysis of the full MIPAS mission. Version 7 of the full mission data was released in 2016, but further improvements have been recently performed in ORM V8 to be used in next full mission reanalysis.

Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets

We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

Experimental and numerical investigation of propeller loads in off-design conditions

The understanding of the performance of a propeller in realistic operative conditions is nowadays a key issue for improving design techniques, guaranteeing safety and continuity of operation at sea, and reducing maintenance costs. In this paper, a summary of the recent research carried out at CNR-INSEAN devoted to the analysis of propeller loads in realistic operative scenarios, with particular emphasis on the in-plane loads, is presented.

Cluster Analysis for Driver Aggressiveness Identification

In the last years, several safety automotive concepts have been proposed, for instance the cruise control and the automatic brakes systems. The proposed systems are able to take the control of the vehicle when a dangerous situation is detected. Less effort was produced in driver aggressiveness in order to mitigate the dangerous situation. In this paper we propose an approach in order to identify the driver aggressiveness exploring the usage of unsupervised machine learning techniques. A real world case study is performed to evaluate the effectiveness of the proposed method.

Network-constrained bi-clustering of patients and multi-scale omics data

Recent advances in omics profiling technologies yield ever larger amounts of molecular data. Yet, the elucidation of the molecular basis of human diseases remains an unsolved challenge. The analysis of multi-scale omics data requires integrative bioinformatic tools capable of multi-modal computing and multi-scale modeling. Unsupervised learning approaches are frequently employed to identify biomolecules and pathways involved in specific diseases.