Articolo in rivista

Vertex flow models for vehicular traffic on networks

Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions

Active fluids comprise a variety of systems composed of elements immersed in a fluid environment which can convert some form of energy into directed motion; as such they are intrinsically out-of-equilibrium in the absence of any external force. A fundamental problem in the physics of active matter…

Pedestrian flows in bounded domains with obstacles

In this paper, we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon-…

An efficient data structure and accurate scheme to solve front propagation problems

Ion diffusion modelling of Fricke-Agarose dosemeter gels

In Fricke-agarose gels, an accurate determination of the spatial dose distribution is hindered by the diffusion of ferric ions. In this work, a model was developed to describe the diffusion process within gel samples of finite length and, thus, permit the reconstruction of the initial spatial…

Lattice Boltzmann simulations of stochastic thin film dewetting

We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equipped with a properly devised stochastic term.…

Continuity properties of solutions to the p-Laplace system

A sharp integrability condition on the right-hand side of the p-Laplace system for all its solutions to be continuous is exhibited. Their uniform continuity is also analyzed and estimates for their modulus of continuity are provided. The relevant estimates are shown to be optimal as the right-hand…

Differentiated cell behavior: a multiscale approach using measure theory

This paper deals with the derivation of a collective model of cell populations out of an individual-based description of the underlying physical particle system. By looking at the spatial distribution of cells in terms of time-evolving measures, rather than at individual cell paths, we obtain an…

On the computation of the nullspace of Toeplitz-like Matrices

On a One-Dimensional Hydrodynamic Model for Semiconductors with Field-Dependent Mobility

We consider a one-dimensional, isentropic, hydrodynamical model for a unipolar semiconductor, with the mobility depending on the electric field. The mobility is related to the momentum relaxation time, and field-dependent mobility models are commonly used to describe the occurrence of saturation…