Two-body gravitational spin-orbit interaction at linear order in the mass ratio
We analytically compute, to linear order in the mass ratio, the "geodetic" spin-precession frequency of a small spinning body orbiting a large (nonspinning) body to the eight-and-a-half post-Newtonian order, thereby extending previous analytical knowledge which was limited to the third post-Newtonian level. These results are obtained applying analytical gravitational self-force theory to the first-derivative level generalization of Detweiler's gauge-invariant redshift variable. We compare our analytic results with strong-field numerical data recently obtained by Dolan et al. [Phys. Rev.