Articolo in rivista

Intermittency in Turbulence: Multiplicative random process in space and time

BiCoN: Network-constrained biclustering of patients and omics data

Unsupervised learning approaches are frequently employed to stratify patients into clinically relevant subgroups and to identify biomarkers such as disease-associated genes. However, clustering and biclustering techniques are oblivious to the functional relationship of genes and are thus not…

A fluid dynamic approach for traffic forecast from mobile sensor data

Muscl reconstruction and haar wavelets

MUSCL extensions (Monotone Upstream-centered Schemes for Conservation Laws) of the Godunov numerical scheme for scalar conservation laws are shown to admit a rather simple reformulation when recast in the formalism of the Haar multi-resolution analysis of L<sup>2</sup>(R). By pursuing…

Mixing and reaction efficiency in closed domains

We present a numerical study of mixing and reaction efficiency in closed domains. In particular, we focus our attention on laminar flows. In the case of inert transport the mixing properties of the flows strongly depend on the details of the Lagrangian transport. We also study the reaction…

Estimation algorithm for a hybrid pde-ode model inspired by immunocompetent cancer-on-chip experiment

The present work is motivated by the development of a mathematical model mimicking the mechanisms observed in lab-on-chip experiments, made to reproduce on microfluidic chips the in vivo reality. Here we consider the Cancer-on-Chip experiment where tumor cells are treated with chemotherapy drug and…

Hydrodynamic correlations in the translocation of a biopolymer through a nanopore: Theory and multiscale simulations

We investigate the process of biopolymer translocation through a narrow pore using a multiscale approach which explicitly accounts for the hydrodynamic interactions of the molecule with the surrounding solvent. The simulations confirm that the coupling of the correlated molecular motion to…

Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations…

Spinning test particles and clock effect in Kerr spacetime

Emulating complex simulations by machine learning methods

Background: The aim of the present paper is to construct an emulator of a complex biological system simulator using a machine learning approach. More specifically, the simulator is a patient-specific model that integrates metabolic, nutritional, and lifestyle data to predict the metabolic and…