Title: Modeling the collective properties of multi-core emulsions under confinement
Abstract
Multi-core emulsions are a class of soft fluids assembled from cluster configurations of deformable oil-water double droplets (cores), often employed as building-blocks for the realisation of devices of interest in biotechnology, drug delivery and tissue engineering. We use lattice Boltzmann simulations to study the physics of multi-core emulsions flowing in microfluidic channels and report numerical evidence of a surprisingly rich variety of driven non-equilibrium states, whose formation is caused by a dipolar fluid vortex triggered by the sheared structure of the flow carrier within the microchannel. If time permits, we will also discuss the translocation dynamics of emulsion drops with multiple close-packed inner droplets flowing within constrictions. Under such conditions, these liquid architectures display a number of non-trivial features, such as permanent shape deformations and memory-like effects, of particular relevance for the design of soft porous materials.