Classification of Particle Numbers with Unique Heitmann-Radin Minimizer

Abstract
We show that minimizers of the Heitmann-Radin energy (Heitmann and Radin in J Stat Phys 22(3): 281-287, 1980) are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in De Luca and Friesecke (Crystallization in two dimensions and a discrete Gauss-Bonnet Theorem, 2016).
Anno
2017
Autori IAC
Tipo pubblicazione
Altri Autori
De Luca, Lucia; Friesecke, Gero
Editore
Kluwer Academic Publishers [etc.]
Rivista
Journal of statistical physics