NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines

Abstract
Recent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical MRI data, with a focus on connectivity and graph theoretical analyses. Importantly, it provides shareable parameter files to facilitate replication of all analysis steps. NeuroPycon is based on the NiPype framework which facilitates data analyses by wrapping many commonly-used neuroimaging software tools into a common Python environment. In other words, rather than being a brain imaging software with is own implementation of standard algorithms for brain signal processing, NeuroPycon seamlessly integrates existing packages (coded in python, Matlab or other languages) into a unified python framework. Importantly, thanks to the multi-threaded processing and computational efficiency afforded by NiPype, NeuroPycon provides an easy option for fast parallel processing, which critical when handling large sets of multi-dimensional brain data. Moreover, its fiexible design allows users to easily configure analysis pipelines by connecting distinct nodes to each other. Each node can be a Python-wrapped module, a user-defined function or a well-established tool (e.g. MNE-Python for MEG analysis, Radatools for graph theoretical metrics, etc.). Last but not least, the ability to use NeuroPycon parameter files to fully describe any pipeline is an important feature for reproducibility, as they can be shared and used for easy replication by others. The current implementation of NeuroPycon contains two complementary packages: The first, called ephypype, includes pipelines for electrophysiology analysis and a command-line interface for on the fiy pipeline creation. Current implementations allow for MEG/EEG data import, pre-processing and cleaning by automatic removal of ocular and cardiac artefacts, in addition to sensor or source-level connectivity analyses. The second package, called graphpype, is designed to investigate functional connectivity via a wide range of graph-theoretical metrics, including modular partitions. The present article describes the philosophy, architecture, and functionalities of the toolkit and provides illustrative examples through interactive notebooks. NeuroPycon is available for download via github (https://github.com/neuropycon) and the two principal packages are documented online (https://neuropycon.github.io/ephypype/index.html, and https://neuropycon.github.io/graph pype/index.html). Future developments include fusion of multi-modal data (eg. MEG and fMRI or intracranial EEG and fMRI). We hope that the release of NeuroPycon will attract many users and new contributors, and facilitate the efforts of our community towards open source tool sharing and development, as well as scientific reproducibility.
Anno
2020
Tipo pubblicazione
Altri Autori
Meunier, David; Pascarella, Annalisa; Altukhov, Dmitrii; Jas, Mainak; Combrisson, Etienne; Lajnef, Tarek; BertrandDubois, Daphne; Hadid, Vanessa; Alamian, Golnoush; Alves, Jordan; Barlaam, Fanny; Saive, AnneLise; Dehgan, Arthur; Jerbi, Karim
Editore
Academic Press,
Rivista
NeuroImage (Orlando Fla., Print)