Abstract
Heavy or light particles introduced into a liquid trigger motion due to their buoyancy, with the potential to drive flow to a turbulent state. In the case of vapor bubbles present in a liquid near its boiling point, thermal coupling between the liquid and vapor can moderate this additional motion by reducing temperature gradients in the liquid. Whether the destabilizing mechanical feedback or stabilizing thermal feedback will dominate the system response depends on the number of bubbles present and the properties of the phase change. Here we study thermal convection with phase change in a cylindrical Rayleigh-Benard cell to examine this competition. Using the Reynolds number of the flow as a signature of turbulence and the intensity of the flow, we show that in general the rising vapor bubbles destabilize the system and lead to higher velocities. The exception is a limited regime corresponding to phase change with a high latent heat of vaporization (corresponding to low Jakob number), where the vapor bubbles can eliminate the convective flow by smoothing temperature differences of the fluid.
Anno
2011
Autori IAC
Tipo pubblicazione
Altri Autori
Schmidt L.E., Oresta P., Toschi F., Verzicco R., Lohse D., Prosperetti A.
Editore
Deutsche Physikalische Gesellschaft.
Rivista
New journal of physics