Abstract
In this paper, for the "critical case" with two delays, we establish two relations between any two solutions y(t) and y*(t) for the Volterra integral equation of non-convolution type
y(t)=f(t)+\int_{t-\tau}^{t-\delta}k(t,s)g(y(s))ds
and a solution z(t) of the first order differential equation
\dot z(t)=\beta(t)[z(t-\delta)-z(t-\tau) , and offer a sufficient condition that limt->+?(y(t)-y*(t))=0.
Anno
2010
Autori IAC
Tipo pubblicazione
Altri Autori
Messina E.; Muroya Y.; Russo E.; Vecchio A.
Editore
Pergamon Press,
Rivista
Applied mathematics letters