Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity

Abstract
With the expanding availability of sequencing technologies, research previously centered on the human genome can now afford to include the study of humans' internal ecosystem (human microbiome). Given the scale of the data involved in this metagenomic research (two orders of magnitude larger than the human genome) and their importance in relation to human health, it is crucial to guarantee (along with the appropriate data collection and taxonomy) proper tools for data analysis. We propose to adapt the approaches defined for the analysis of gene-expression microarray in order to infer information in metagenomics. In particular, we applied SAM, a broadly used tool for the identification of differentially expressed genes among different samples classes, to a reported dataset on a research model with mice of two genotypes (a high density lipoprotein knockout mouse and its wild-type counterpart). The data contain two different diets (high-fat or normal-chow) to ensure the onset of obesity, prodrome of metabolic syndromes (MS). By using 16S rRNA gene as a genomic diversity marker, we illustrate how this approach can identify bacterial populations differentially enriched among different genetic and dietary conditions of the host. This approach faithfully reproduces highly-relevant results from phylogenetic and standard statistical analyses, used to explain the role of the gut microbiome in relation to obesity. This represents a promising proof-of-principle for using functional genomic approaches in the fast growing area of metagenomics, and warrants the availability of a large body of thoroughly tested and theoretically sound methodologies to this exciting new field.
Anno
2010
Autori IAC
Tipo pubblicazione
Altri Autori
Liu, Yuanhua; Zhang, Chenhong; Zhao, Liping; Nardini, Christine
Editore
Oxford University Press,
Rivista
Briefings in functional genomics (Print)