Abstract
In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation. Those characteristics are referred to as quantum trajectories, since they are generated via ordinary differential equations similar to Hamilton's equations, but including the so-called quantum potential, and they can be used to reconstruct exactly the quantum-mechanical nuclear wave function, provided infinite initial conditions are propagated in time.
Anno
2020
Tipo pubblicazione
Altri Autori
Talotta F.; Agostini F.; Ciccotti G.
Editore
American Chemical Society,
Rivista
The journal of physical chemistry. A