A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws,

Abstract
-- We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and suciently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.
Anno
2019
Tipo pubblicazione
Altri Autori
Bertsch M.; Smarrazzo F.; Terracina A.; Tesei A.
Editore
Accademia nazionale dei Lincei
Rivista
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni (Online)